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Kolmogorov-Sinai Entropy, Lyapunov Exponents, and
Mean Free Time in Billiard Systems
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1. INTRODUCTION, SOME DEFINITIONS AND
PREVIOUS RESULTS

Dispersing billiards are extremely useful models to study dynamical proper-
ties which are present in many other non-dissipative systems. Beyond their
physical relevance, their simple definition make them natural candidates to
develop and/or to apply rigorous mathematical tools. On the other hand,
their simplicity make it also possible to study their behavior by careful
computer experiments whose results may shed new light on some unsolved
conjectures and/or proofs. The interaction between mathematical physics
and computer experiments has been extremely fruitful in this particular
case.

In this paper we extend and complete a previous computer experi-
ment about billiards.(1) Our goal is to study the influence of the geometry
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We perform new experiments on the Kolmogorov-Sinai entropy, Lyapunov
exponents, and the mean free time in billiards. We study their dependence on
the geometry of the scatterers made up of two interpenetrating square lattices,
each one with circular scatterers with different radius. We find, in particular,
that the above quantities are continuous functions of the ratio of the scatterer
radius. However, it seems that their derivative is discontinuous around the
radius ratio which separates the diffusive and nondiffusive types of geometries.

807

0022-4715/97/0800-0807$12.50/0 C 1997 Plenum Publishing Corporation
822/88/3-4-18



808 Garrido

of scatterers on the billiard behavior. We mean here by geometry of the
scatterers whether there are collisionless trajectories (billiards with horizon
denoted by ooH), or not (billiards without horizon, denoted OH), when the
periodicity of the obstacles does not allow one to draw a path to infinity
avoiding the obstacles, or diamond billiards, denoted D, in the other case
where the obstacles keep the particle inside a bounded region. In particular
we study the Kolmogorov-Sinai entropy which is related to the number of
symbols necessary for an optimal coding of the particle trajectory, the
Lyapunov exponents which define the time-scale of the systems chaoticity
and the mean free time between collisions. The latter is used to check the
goodness of the computer simulation by comparing the mean free time
numerical results with its well known analytic formula.

In order to get an analytic expression for the KS entropy of the Sinai
billiard, we need more detailed information about the dynamics (see basic
definitions in ref. 2). The two dimensional phase space consists of points
x = (r, 0) where r represents the position of the particle when it hits an
obstacle and Pe(n/2, 37/2) is the incident angle formed by the velocity at
collision and the outer normal to the obstacle, measured counterclockwise.
The dynamics is the map T mapping one collision x = (r, 0) to the pre-
vious one x' = (r', 0'). In fact, it is simple to show that an initial curve in
the phase space, (r', P'(r')), after one collision it becomes (r, 0(r)) where
both curves are related by the differential equation:

valid at every point of the curve where the map T has no singularity, here
K(r) is the obstacle curvature at point r and T is the distance between
the collision points x and x'. By iterating the equation (1.1) an initial
segment

where S is assumed to be suitable small, becomes the solution of the
differential equation:
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where we set x = x(n} = (r ( n ) , J(n)) = T - n (T n x ) and x ( j } = T - j ( T n x ) and
where r(j) and P(j) are the phase space coordinates after then jth collision
trajectory x(n),..., x(0), and:

with B(0) = 1 and r(n - 1 , n ) is the distance between collisions n — 1 and n,
and B(n) depends on x see ref. 2, p. 244. We have also assumed that the
map T is not singular along the trajectory x(0),..., x(n).

The Kolmogorov-Sinai Entropy is then proved in ref. 3 to be given by
the integral over phase space:

where Te is the restriction of the map T to the unstable manifold in x and
v is the invariant measure under T given by: dv(x) = - (2P) -1 cos(0) dr dP
where P is the total perimeter of the obstacles.

In fact suppose that y'(x') = Ty(x), y = T-1/', if y', y are two increasing
curves around x' = Tx and x, i.e., dP/dr > 0 and d$'/dr' > 0. Then the
expansion rate at x' (using as metric dr2 + K - 2 d & 2 and setting c = cos<P,
c' =cos ^', k = k ( r ) , K' = K(r')) is:

having used the elementary trigonometrical relations in ref. 2, p. 244; so
that using that J v(dx)(F(x) — F(Tx)) = 0 by the invariance of v(dx) we get:

having renamed x' with x in the second step, which also defines Be(x).
A rigorous proof of the above derivation of h( T) can be found in ref. 4.
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On the other hand the equation q = p(r) of the expanding manifold
ye(x), which is easily seen to be a monotonically increasing function of r
(see ref. 2), can be obtained from the relation:

if y0 is the curve with equation d<p/dr = 0 (or equal to any monotonically
increasing function, arbitrarily prefixed), see ref. 2.

It is convenient to define, setting cn = cos &(n), Kn = K ( r ( n ) ) :

and it is easily checked, ref. 2, p. 744, that B(n) coincides with (1.4).
Hence:

A different way to compute the KS entropy is to use the Pesin identity:

with the Abramov formula:

where S is the billiard flow, r is the mean free time between collisions and
Ai are the system Lyapunov exponents. In the Sinai Billiard case, there is
only one positive Lyapunov exponent X and then it is proportional to the
KS entropy. The Lyapunov exponent A can be computed directly by using
its definition (see ref. 5 for more details):
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where C(n) = A ( n , n - 1 ) A ( n - 1 , n - 2 ) . . . A ( 1 , 0 ) ,

rcs(m) = —R(m) cos P(m), R(m) is the radius of the obstacle at the mth hit
and if is any initial vector ij = (r, sin P).

Some numerical results about the KS entropy, the Lyapunov
exponents and the mean free time is available in the literature. Let us make
a brief report.

Benettin and Strelcyn(6) found in 1978 numerical evidence that the KS
entropy of a generalized stadium billiard is not a monotone decreasing
function of a topological parameter 8 which controls the stadium
curvature.

In 1984 Benettin(5) studied numerically the Lyapunov exponent for the
Diamond billiard as a function of the sides curvature, e. He found that the
behavior h^s 1 / 2 fitted his results very well for all data between 0 <£ < 1.

Also, in 1984, Friedman, Oono add Kubo,(7) studied numerically and
analytically the KS entropy for a two dimensional square and triangular
lattice billiards when the radius, R, tend to zero. Thet found that
h = - 2 In R when R -» 0. They also studied the triangular billiard around
the critical radius which Separates the finite horizon behavior from the
infinite horizon one. They claimed, without showing it, that the KS entropy
is continuous and they suggested that it is even continuously differentiable..

In 1985 Bouchaud and Le Doussal(8) studied numerically the KS
entropy for a two dimensional square lattice billiard. They confirmed the
small R behavior found by Friedman et al.,(7) in particular they got
h = a log P/R with a ^ /? = 2 + 0.2. They also found that h grows regularly
for R = 0 until R ^ 1, which is the critical value which separates the infinite
horizon behavior from the diamond one. They argue that h^(1 — R)1 / 2

when R -> 1 but they do not confirm this point with their numerical
experiment. In fact, they observe a quasiconstant value of h(S) between
R = 0.99 and R = 0.999, before the steep decrease when R is very close
to 1.

Finally let us mention the works of P. R. Baldwin in 1988 and
1991.(9,10) In the first one he studied numerically an infinite horizon soft
billiard system (i.e., the scatterers are regions with a constant potential, U).
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In particular, he argued that h^In U/R2 when R2<U<1. More
interesting is his 1991 work where he manage to give an explicit encoding
for the trajectories of a particle in the ooH billiard which is near the
optimal one. He computes and confirms the KS entropy results of Friedman
et al. (7) when R -> 0 by studying smaller radius than them.

2. THE COMPUTER EXPERIMENT

Our system is a square with periodic boundary conditions with sides
of unit length, a =1. We take the center of the torus as the origin of
coordinates: (0, 0). There are a circle of radius R and center at (0, 0) and
four more circles with radius R' and centers at (1/2, 1/2), (1/2, —1/2),
(-1/2, -1/2), (-1/2, 1/2). Obviously only the part of the circles inside the
torus is relevant (see Fig. 1).

A point particle is moving freely with unit velocity, |v| = 1, in the space
external to the circles and hitting them elastically (conserving the modulus
of the total momentum and the energy).

For any fixed R' < 1 / /2 there are four different regions in the R
parameter space (see Fig. 2):

(T) Triangle: 1 / 2 < R < / 1 / 2 - R ' + R'2.

(D) Diamond: 1 A/2 - R' < R < 1/2.

(OH) Billiards without horizon: 1/2 - R' < R < 1//2 - R'.

(ao H) Billiards with infinite horizon: 0 < R < 1/2 - R'.

Fig. 1. General billiard structure with scatterers of radius R and R' in a box with side
length a.
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Fig. 2. Four possible billiard configurations for different R and R' values. Scatterers cover
the full space in the gray zone. All the (R, R') values studied in this paper are located along
the dashed line.

In this paper we fix R' = 0.4. Therefore the regions become: T: 0.5 <
R< 0.509901...; D: 0.307107...< R < 0.5; OH: 0.1 < R < 0.307107...; ooH: 0
< R < 0.1. We compute the different observables we explain below on the
regions D, OH and ooH as a function of R. Region T is so small, in this
case, that our algorithm becomes very unefficient in CPU computer time,
so we do not study it. The algorithm we use is explained with detail in
Ref. 1.

For each radius R, we have computed the evolution of the following
observables:

(a) The curvature operator (Eq. 1.4)):

(b) The KS entropy (Eq. (1.10)):

(c) The Lyapunov exponent:



Table I. Number of points N(f) and f inal collision n m a x ( f ) that we have used
to fit the evolution of the observables: f=h, B and L to be the function
f(n) = a1 + a2n

-a3, where ne [ n m a x ( f ) - N ( f ) , n m a x ( f ) ] is the collision number
and R is the radius studied.

R

0.0000
0.0200
0.0400
0.0600
0.0800
0.1000
0.1200
0.1400
0.1600
0.1800
0.2000
0.2200
0.2400
0.2600
0.2800
0.3000
0.3010
0.3020
0.3030
0.3040
0.3050
0.3055
0.3060
0.3062
0.3065
0.3070
0.3072
0.3075
0.3080
0.3090
0.3100
0.3110
0.3120
0.3130
0.3140
0.3200
0.3400
0.3600
0.3800
0.4000
0.4200
0.4400
0.4600
0.4800

N(h)

10
8
9
8
9

10
10
10
10
10
11
12
13
13
14
16
16
16
16
17
17
17
17
17
18
17
17
17
7
4
6
9
7
7

12
14
8

14
16
17
16
18
6

25

n m a x ( h )

17
16
16
16
16
17
17
18
18
19
20
21
23
24
25
30
31
31
31
32
32
32
32
32
34
32
32
32
31
31
30
30
30
30
30
25
25
25
30
31
30
35
39
48

N(B)

7
9
8
9
9

10
10
10
11
11
12
11
13
14
14
17
17
18
18
18
18
18
19
19
18
19
19
19
18
18
18
3
7

18
18
14
9

10
14
18
13
12
21
26

nmax(B)

17
16
16
16
17
17
17
18
19
20
21
22
23
25
25
33
33
34
34
35
35
35
36
36
34
36
36
36
35
34
34
33
33
33
33
25
25
25
30
33
30
35
40
50

N(L)

9
9
9
9
9
9
9

10
10
10
11
11
12
13
13
16
16
16
16
17
17
17
17
18
18
18
19
17
10
10
10
16
16
15
15
13
13
13
15
16
16
18
21
26

n m a x ( L )

17
16
16
16
16
17
17
18
18
19
20
21
23
24
25
30
31
31
31
32
32
33
33
34
34
35
37
32
40
40
40
30
30
29
29
25
25
25
29
30
30
35
40
50
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(d) The mean free time:

Where N is the number trajectories with different random initial
conditions and ncol is the number of collisions corresponding one trajectory.
In our computer simulation N=107 for all R and, in most of the cases
ncol = 50. The different radius that we have studied in this paper appear on
Table I. Let us remark that the error bars are included in all the figures
showed below. Sometimes they do not appear explicitly because the symbol
size is much bigger that the error bar size.

3. THE RESULTS

I. The Curvature Operator

Some typical averaged evolutions for the curvature operator B(n) are
presented in Fig. 3. We see that, depending on the radius, the convergence
to an asymptotic value is reached after 5 to 15 collisions. In fact, we see
that there is a kind of critical slowing down as we approach the critical
radius Rc = 0.307107... which separates the diamond topology and the 0H

Fig. 3. B(n) given by Eq. (1.4) as a function of n for different radius (from top to bottom):
K = 0.48, 0.30, 0.40, 0.20, 0.10 and 0. The lines are the corresponding fits (see text).
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one. This is so because for the critical radius case, Rc, the vertex of the
diamond are tangent and then they are trajectories which may become
trapped infinite time in their neighborhood. We are interested in the
asymptotic value of B(n) when n-> oo. Because the system chaoticity and
the initial rounding error propagation through the simulation, we should
discard the data after some collisions.

In particular, we can estimate the maximum number of collisions that
we may keep safely. We equate the data statistical error: 0(B)//N, with
the expected rounding error propagation after nmax(R, B) collisions:
1 0 - 1 6 e x p [ X ( R ) n m a x ( R , B ) ' ] , where a(B) is the standard deviation for the
B data, X(R) is a rough estimate of the Liapunov exponent and we have
assumed that the initial error is 10 -16 because we are working in double
precision. This implies that nmax(R, B) = min{ [ 16 ln( 10) — ln(N)/2 +
l n ( f ( B ) ) ] ^ ' ( R ) , n c o l ( R ) } . As we see in Fig. 3, for some values of R,. we
observe a kind of slow decay and therefore, it is risky to identify
B(nmax(R,B)) with the wanted asymptotic value B = limn->oo B(n). It is
more convenient to study the data asymptotic behaviour. In order to do
this, we have fitted B(n) to the function

where n0(B, R) = nmax(R, B)/2.
Then the asymptotic value B is identified with the coefficient a1. When

the error bar for the coefficient a1,o-a1, is such that a2/nmax(R, B)a3 <

<ra1 < a2/n0(R, B)a3, that is, when the fitted function variation over the inter-
val is smaller than the typical error, we change the strategy. In this case,
we define n0(R, B) = ( |a2 | /aa 1)1 / a 3 and we take as asymptotic value the
average of B(n) over the interval n e [n0(B, R), nmax(R, B)].

The asymptotic value B = limn->as B(n), is plotted in Fig. 4. We see
how the curvature operator behaves in the three regions. In the ooH and
OH regions, B is an increasing function on R. In the D region B is a
decreasing function on R when R < 0.4 and increasing one when R > 0.4.
We fitted Several functions to these data. The best ones are:

(a) ooH interval (6 points): B(R) = b1+b2R where b1 = 1.76+ 0.01
and b2 = 4.5 ± 0.2.

(b) OH interval (20 points): B(R) = b1 + b2R + b 3 (R c -R ) - b 4 where
b1 = -2.9 ±0.7, b2 = 3.1 ± 1.4, b3 = 3.4 ± 0.7 and b4 = 0.21 ± 0.02.

(c) Re[0.3,Rc= 0.30710...] (8 last points from the OH interval):
B(R) = b 1 ( R c - R ) - b 2 where b1 =2.26±0.08 and b2 = 0.252 + 0.005.
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Fig. 4. Assymptotic values of B(n) coming from the fit explained in Section 3I, as a function
of the radius R.

(d) coH and OH intervals (26 points): B(R) = b1+b2R + b3(R c - R ) - b 4

where b1 = -3.5±0.7, b2 = 1.3±0.7, b3 = 4.1±0.6 and b4 = 0.20±0.02.
(e) D interval (18 points): B(R) = (b1 + b2R + b3R2 + b4R

3)
( R - R c ) - 1 / 4 where b1 = -92.3 ± 14.2, b2 = 760.4± 113.5, b3= -2036.0±
298.2 and b4= 1825 ±258.1.

(f) R e[Rc, 0.313] (first 8 points from the D interval): B(R) =
b1(Rc-R)-b2 where b1 = 2.6 ±0.2 and b2 = 0.22±0.01.

From these fits we see that the B critical behavior near the radius
R = Rc is given by a power law divergence with a critical exponent between
0.20 and 0.25.

II. The KS Entropy

Figure 5 shows similar plot as Fig. 3 for the Kolmogorov-Sinai
entropy defined by Eq. (2.2). In this case it is more dramatic how after
a few collisions the asymptotic value is reached. But, anyway, we have
carried out a similar analysis as in the precedent case. The resulting
asymptotic values are plotted in Fig. 6 and Fig. 7. We see that the KS
entropy is not a monotonic function on R except in the 0H region in which
it decreases with R. In the infinite horizon region, the inclusion of a sublat-
tice of scatterers while keeping the infinite horizon topology, increases the
entropy with respect the pure square lattice of scatterers i.e., R = 0. This
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Fig. 5. h(n) given by Eq. (2.2) as a function of n for different radius (from top to bottom):
R = 0.10, 0.0, 0.20, 0.30, 0.40 and 0.48. The lines are the corresponding fits (see text).

Fig. 6. The Kolmogorov-Sinai entropy computed from the assymptotic values of h(n)
coming from the fit explained in Section 3I, as a function of the radius R.
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Fig. 7. Detailed behavior of the Kolmogorov-Sinai entropy around the critical radius
Rc = 0.3071... which separates the Diamond topology from the zero horizon one.

possibly means that the corresponding Marcov Partition will be more com-
plicated with respect the R = 0 one. When the infinite horizon window is
closed, the KS entropy becomes a, monotonic decreasing function on R in
the OH region. And therefore, by increasing R in this region, the Marcov
Partition will be simpler. In the Diamond region the behavior is more
involved. At the critical radius, Rc, the KS entropy reaches a. local mini-
mum reflecting the fact that the trajectories spend most of the time at the
Diamond vertex, i.e., they are localized at the phase space. By increasing R
around Rc the KS entropy increases and reaches a maximum near R = 0.34.
From there, the KS entropy decreases due to the smaller curvature of the
scatterers. In Fig. 7 we see how the KS entropy behaves near the critical
value Rc. It seems that is a continuous and no differentiable function in Rc.

III. The Mean Free Time

The computation of the mean free time give us the opportunity to
check the goodness of our computer simulation. One may compute analyti-
cally its value and compare with the one obtained with the computer
simulation. In fact, the analytical derivation is simple, the mean free time
is given by
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where M is the phase space defined by the coordinates x = (r, P) and T(X)
is the time that the particle takes to go from the initial position at x to
the next collision point. Substituting dv(x)= —(2P) -1 cos(0) dr dP into
Eq. (3.2) we get:

where G is the phase space available by the flow (see ref. 9), x, y and (p are
the spatial coordinates and the angle that the particle velocity forms with
the x-axis respectively. Finally, A is the available area for the particle and
P is the perimeter of the obstacles.

Equation (3.3) would lead to

and

where

and l= 1A/2 in our case.
Figures 8 and 9 represent the mean free time and its mean square

displacement, ar, for different R. In the coH region we see how the mean
square displacement is finite which is against its expected infinite value.
This is so because our algorithm discard the collisions which take more
that 100 units of time. That is, in Eq. (2.4) all r i (n — 1, n) are finite.

The dotted curve in Fig. 8 and Fig. 9 is the numerical solution of
Eqs. (3.4) and (3.5). As we see, the formulas fits almost exactly the experi-
mental data except in the neighborhood of the critical radius where the set
of trajectories that spend many time crossing the vertex have a macroscopi-
cal influence on the value numerically obtained of the mean free time. One
may think on doing larger computer simulations with more collisions but,
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Fig. 8. Mean free time (diamond symbols) and its mean square displacement (plus symbols)
as a function of R.

Fig. 9. Detailed behavior of the Mean free time (diamond symbols) and its mean square
displacement (plus symbols) near the critical radius Rc = 0.3071....



822 Garrido

as we discussed at the beginning of Section 3, there is an inherent limitation
on this systems. The precision of the computer and the system chaoticity,
limits to a maximum of about 50 collisions per evolution. It is clear that
near Rc it is needed far more collisions in order to study the critical
behavior cleanly. The present status of computer technology prevent us to
study with confidence that region.

We have also carried out several linear fits to our data for the mean
square displacement of r.

(i) 0.1< R < 0.3055 (11 points): ar(R) = d1 +d2R where d1 =0.426±
0.001 and d2 = -0.956 ± 0.006.

(ii) RC < R < 0.5 (18 points): ffr(R) = d 1 +d 2 R where d1 = 0.306±
0.001 and d2 = -0.553 ±0.004.

(iii) 0.3 < R < 0.315 (20 points): ar(R) = d1 +d2R where d1 = 0.304 +
0.001 and d2= -0.549 + 0.005.

Let us remark the linear behavior of the mean square displacement of r.
In particular, from the fits (ii) and (iii) we can conclude that the linear
behavior of the D region invades the 0H region up to R = 0.3. This
behavior has a slope of about —1/2 while the corresponding to the 0H
region (fit i)) has the slope of ^ — 1.

Fig. 10. Lyapunov exponent as a function of R computed by using Eq. (1.13) (diamond
symbols) and the Abramov's formula (plus symbols).
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Fig. 11. Detailed behavior of the Lyapunov exponent near Rc computed by using Eq. (1.13)
(diamond symbols) and the Abramov's formula (plus symbols).

IV. The Lyapunov Exponent

Figures 10 and 11 show the behavior of the Lyapunov exponent as
computed by Eq. (1.13). In practice no difference has been found between
both methods of computing L except near Rc where the convergence of
Eq. (1.13) is much worse and leads to uncontrolled fluctuation of the
nonlinear fits explained in Section 3I (see Fig. 11). The Lyapunov exponent
increases with R from R = 0 up to R ~ 0.3. It reaches there a kind of
plateau and decreases slightly near Rc. From Rc is increases a little bit and
again it reaches a new tableau from which it increases with R. From the
above analysis it seems that, again, the Lyapunov exponent is a continuous
but not differentiable function around Rc.

4. CONCLUSIONS

The main goal of this paper was to make a generic numerical study of
the influence of geometry in Billiards for some typical dynamic magnitudes
as the mean curvature, the Kolmogorov-Sinai entropy, the mean free time
and the Lyapunov exponent. In particular we have studied the effect in
these magnitudes of the transitions between the Diamond, the zero horizon
and the infinite horizon geometries. We have found that the transition
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between OH and ooH is smooth and no pathologies appear. In contrast,
the transition between D and OH is much more interesting. First, the mean
curvature seems to diverge around the critical radius which separate both
geometries, Rc, with an exponent approximated equal to 1/4. Second, the
latter divergence influences the KS entropy behavior but not the mean free
time one whose analytical formula is well known. The KS entropy seems
to be a continuous hut not differentiable function in Rc.
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